# 平成 27 年度 江野科学振興財団 研究助成 研究内容および成果報告

# 架橋高分子微粒子からなるコロイド結晶フィルムの 構造色発色機構の解明

Study on structural coloring mechanism of colloidal crystal films consisting of cross-linked polymer microparticles

### 名古屋工業大学 猪股克弘

## 1. 緒言

自然界で、昆虫、魚のように鮮やかな色を示す生物の中には、色素を使わずに、可 視光波長オーダーの微細な規則構造によって光の回折や干渉が起きることで発色さ せる、構造色を利用している例が数多く見られる。近年、人工的に構造色を作り出し、 繊維などへ応用しようとする動きが見られ始めている。

我々はこれまで、架橋エチルアクリレート/メチルメタクリレート共重合体(P(EA-MMA))微粒子を用い、微粒子が自己集合する事により形成したアクリル微粒子集積体 (コロイド結晶)が、各種溶媒で膨潤させた際に様々な構造色を示す事を確認してい る。これは、微粒子の膨潤度が溶媒によって異なり、コロイド結晶の配列周期が様々 に変化する事に由来するものだと考えられる。更に、コロイド結晶をエチルアクリレ ートモノマー中に膨潤させた状態で重合する事で、ポリエチルアクリレートエラスト マー中に構造色を保つ事ができ、コロイド結晶の固定化に成功した。しかし、このよ うな膨潤及び重合による構造色の発現と固定化の挙動が、他のモノマーでも一般的に 観測されるのかどうかについては、未だ検討は行っていない。

本研究では、ポリエチルアクリレートで見られたような、重合前の構造色を重合後 も保つようなコロイド結晶の固定化が、一般的に見られる現象であるかどうかを検討 することを目的とする。様々なモノマー中に、P(EA-MMA)微粒子集積体を浸漬させ、 構造色を発現したのち重合を行い、重合前後の構造色の変化について調査した。また、 重合後の微粒子の配列状態を観察し、コロイド結晶の構造変化について検討した。

### 2. 実験

P(EA-co-MMA)微粒子の重合は、ソープフリーエマルション重合により行った。モ ノマーとしてエチルアクリレート(EA)とメチルメタクリレート(MMA)、架橋剤と してエチレングリコールジメタクリレート(EGDM)、イオン性コモノマーとして p-スチレンスルホン酸ナトリウム(NaPSS)、および開始剤として過硫酸カリウム (K<sub>2</sub>S<sub>2</sub>O<sub>8</sub>)を、100/100/1.0/1.0/0.3のモル比で混合し、リン酸緩衝溶液中 65℃で 5 時 間、その後 80℃で1時間攪拌した。反応終了後に冷却し、白濁したサスペンション溶 液が得られた。サスペンション溶液を室温乾燥させ、規則構造を持つ微粒子集積体フ ィルムを調製した。

得られた微粒子集積体フィルムを、Table1に示す18種類のモノマー中で膨潤させ、 発色挙動の調査を行った。また、モノマーに開始剤と架橋剤を加えた溶液に微粒子集 積体を膨潤させ、その状態でラジカル重合反応を行う事で、微粒子集積体フィルムを 高分子マトリックス中に固定化させた複合フィルムを調製した。

微粒子がモノマー中で膨潤した際の粒子径は、サスペンション溶液を大過剰の各種 モノマーで希釈した溶液の動的光散乱(DLS)測定から求めた。微粒子集積体フィル ム及び複合フィルムの高次構造は、原子間力顕微鏡(AFM)を用いて観測した。重合 前後の各フィルムが示す構造色は、紫外・可視吸光スペクトルにより評価した。

Table 1. Used monomers. Group A, B, and C contains acrylic monomers with chemical structure  $CH_2=C(-R1)-COO-R2$ , and the structure for R1 and R2 are indicated. In Group D, the chemical structure of monomer is indicated.

| Code                                       | Name                             | Abbr. | R1                  | R2                                                                                                  |  |  |
|--------------------------------------------|----------------------------------|-------|---------------------|-----------------------------------------------------------------------------------------------------|--|--|
| Group A                                    | Group A: Short alkyl chain       |       |                     |                                                                                                     |  |  |
| A1                                         | methyl acrylate                  | MA    | -H                  | -CH <sub>3</sub>                                                                                    |  |  |
| A2                                         | ethyl acrylate                   | EA    | -H                  | -CH <sub>2</sub> CH <sub>3</sub>                                                                    |  |  |
| A3                                         | butyl acrylate                   | BA    | -H                  | -(CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub>                                                    |  |  |
| A4                                         | methyl methacrylate              | MMA   | -CH <sub>3</sub>    | -CH <sub>3</sub>                                                                                    |  |  |
| A5                                         | butyl methacrylate               | BMA   | -CH <sub>3</sub>    | -(CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub>                                                    |  |  |
| Group B: Long alkyl chain                  |                                  |       |                     |                                                                                                     |  |  |
| B1                                         | hexyl acrylate                   | HA    | -H                  | -(CH <sub>2</sub> ) <sub>5</sub> CH <sub>3</sub>                                                    |  |  |
| B2                                         | 2-ethylhexyl acrylate            | EHA   | -H                  | -CH <sub>2</sub> CH(C <sub>2</sub> H <sub>5</sub> )-(CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub> |  |  |
| B3                                         | hexyl methacrylate               | HMA   | -CH <sub>3</sub>    | -(CH <sub>2</sub> ) <sub>5</sub> CH <sub>3</sub>                                                    |  |  |
| B4                                         | isobornyl acrylate               | IBXA  | -H                  | $-C_{10}H_{17}$                                                                                     |  |  |
| Group C: Ether, alcohol, acid, and halogen |                                  |       |                     |                                                                                                     |  |  |
| C1                                         | 2-methoxyethyl acrylate          | MEA   | -H                  | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub>                                                   |  |  |
| C2                                         | 2-(2-ethoxyethoxy)ethyl acrylate | EEEA  | -H                  | -(CH <sub>2</sub> CH <sub>2</sub> O) <sub>2</sub> -OCH <sub>2</sub> CH <sub>3</sub>                 |  |  |
| C3                                         | glycidyl methacrylate            | GMA   | -CH <sub>3</sub>    | $-CH_2-C_2H_3O$                                                                                     |  |  |
| C4                                         | hydroxyethyl acrylate            | HEA   | -H                  | -CH <sub>2</sub> CH <sub>2</sub> OH                                                                 |  |  |
| C5                                         | hydroxyethyl methacrylate        | HEMA  | -CH <sub>3</sub>    | -CH <sub>2</sub> CH <sub>2</sub> OH                                                                 |  |  |
| C6                                         | 2-carboxyethyl acrylate          | βCEA  | -H                  | -CH <sub>2</sub> CH <sub>2</sub> COOH                                                               |  |  |
| C7                                         | 2-chloroethyl acrylate           | CEA   | -H                  | -CH <sub>2</sub> CH <sub>2</sub> Cl                                                                 |  |  |
| Group D: Others                            |                                  |       |                     |                                                                                                     |  |  |
| D1                                         | N,N-dimethyl acrylamide          | DMA   | CH <sub>2</sub> =C  | $H-CO-N(CH_3)_2$                                                                                    |  |  |
| D2                                         | styrene                          | St    | CH <sub>2</sub> =Cl | $H-C_6H_5$                                                                                          |  |  |

#### 3. 結果・考察

Fig. 1 に、例として 3 種類のモノマー、 EA、HMA、EHA で膨潤した微粒子集積体、 およびその重合後の複合フィルムの写真 画像を示す。Fig. 1 より分かるように、各 種モノマー中に膨潤した微粒子集積体は 鮮やかな構造色を示した。吸収スペクトル のピーク波長から、モノマー膨潤状態での 構造色波長を評価した。

微粒子集積体において、微粒子の層が層 間隔 d で積層している場合、層面と垂直な 方向から観測した時の構造色波長λは、有 効屈折率 n<sub>eff</sub> と d を用いて次式で表される。

### $\lambda = 2 n_{\rm eff} d$

すなわち、Fig. 1 で見られる構造色の違い は、使用するモノマーにより  $n_{eff}$ と膨潤後の 微粒子積層間隔 d が異なる事に起因すると 考えられる。今、純モノマーの屈折率が  $n_{eff}$ にほぼ等しいと仮定し、各膨潤試料で観測 される構造色の波長  $\lambda \ge n_{eff}$  から $\lambda/2n_{eff}$ を算 出し、Hansen の方法により算出した溶解度 パラメーター (SP) に対してプロットした。 結果を Fig. 2 に示す。なお、IBXA  $\ge \beta$ CEA に関しては、浸漬中にフィルムが崩壊し、構 造色を評価することができなかった。

Fig.2の縦軸の値は*d*に対応し、微粒子が どの程度のサイズに膨潤しているのかの尺 度になると考えられる。各プロットは、Table



Fig. 1 Photo images of colloidal crystal films swollen in various



Fig. 2. Plots of  $\lambda/2n_{\text{eff}}$  against the monomer's solubility parameter. The monomers for Group A, B, C, and D are distinguished by  $\bullet$ ,  $\blacktriangle$ ,  $\blacktriangledown$ , and  $\blacksquare$ , respectively.

1 でモノマーの化学構造により Group A~D にグループ分けしたのに従い、各グルー プを記号で区別している。例えば、短いアルキル鎖を持つモノマー(●)よりも長い アルキル鎖のモノマー(▲)の方が SP の値が小さいこと、各種官能基を持つモノマ ー(▼)は幅広い SP 領域の中に分散していることが分かる。全体を見ると、SP が大 きくなると λ/2neff が大きくなる傾向があるように見える。一方、微粒子が最もよく膨 潤すると考えられるのは、P(EA-MMA)微粒子とモノマーとの親和性の高い場合、すな わち P(EA-MMA)の SP 値(計算値では 20.1 (MPa)<sup>1/2</sup>)と一致した場合であり、そのた め Fig 2 のプロットは SP = 20.1 (MPa)<sup>1/2</sup>付近に最大値を持つようなプロットであるこ とが期待される。しかし、Fig. 2 の結果からそのような傾向を抽出するのは困難であ った。さらに、溶媒中で孤立した微粒子が各モノマー中でどの程度膨潤しているかを 調べるため、微粒子重合後のサスペンシ ョン溶液を各モノマー中に滴下した希釈 溶液を用いて、DLS 測定を行った。しか し、DLS で得られた粒径とフィルムの構 造色波長の間にも、有意な相関を見出す ことは困難であった。以上より、今回各種 モノマーで膨潤させた系の構造色がどの ような要因で決まるかに関しては、更な る考察が必要である。

一方、Fig. 1 のモノマー重合後の写真を 見ると、EA では構造色が保持されている のに対して、HMA ではフィルムは無色透 明となり、また EHA では微粒子集積体部 分が白濁していることが分かる。他のモ ノマーについても同様の実験を行ったと ころ、同じように「構造色保持 (colored)」、 「透明 (transparent)」、「白濁 (turbid)」の いずれかに分類できることが分かった。 これらの結果を Table 2 に示した。また、 各モノマーの重合後のマトリックス高分 子と P(EA-MMA)との親和性を評価する ために、各モノマーの重合体の溶解度パ ラメーターSP を Hansen の手法により求 め、屈折率 n とともに Table 2 に示した。

Fig. 2 には、マトリックス高分子の SP を横軸、屈折率 n を縦軸とし、構造色保 持の系を●、透明の系を〇、白濁の系を▲ でプロットした結果を示している。図中、 P(EA-MMA)に相当する値を水平および 垂直の直線で示した。Fig. 2 に示すよう に、白濁の系は、SP が他の系と比べて小 さい領域(EHA、HA)あるいは大きい領 域(HEMA)、および屈折率差が非常に大 きい領域(St)に位置しているように見え る。また、透明の系は、屈折率差の小さい 領域に位置している。以上を踏まえると、 例外はあるものの(例えば HEA や St)、 構造色保持の系は SP が 19.3~24.7

Table 2. Visual image of the colloidal crystal film after polymerization of the swollen monomer. Solubility parameter and refractive index values for the corresponding polymer are also listed.

| Abbr. | Visual image | SP<br>/(MPa) <sup>1/2</sup> | п     |
|-------|--------------|-----------------------------|-------|
| MA    | Transparent  | 21.51                       | 1.494 |
| EA    | Colored      | 20.46                       | 1.467 |
| BA    | Colored      | 19.32                       | 1.458 |
| MMA   | Colored      | 20.64                       | 1.483 |
| BMA   | Transparent  | 19.08                       | 1.489 |
| HA    | Turbid       | 18.70                       | 1.463 |
| EHA   | Turbid       | 18.09                       | 1.467 |
| HMA   | Transparent  | 18.76                       | 1.490 |
| IBXA  |              |                             |       |
| MEA   | Colored      | 21.05                       | 1.468 |
| EEEA  | Colored      | 20.35                       | 1.467 |
| GMA   | Colored      | 24.65                       | 1.507 |
| HEA   | Colored      | 28.92                       | 1.482 |
| HEMA  | Turbid       | 27.11                       | 1.512 |
| βCEA  |              |                             |       |
| CEA   | Colored      | 22.94                       | 1.505 |
| DMA   | Colored      | 24.05                       | 1.512 |
| St    | Turbid       | 20.62                       | 1.592 |



Fig. 2. Relationship between SP and n values after polymerization of the matrix polymer. Colored, transparent, and turbid samples are indicated by  $\bullet$ ,  $\bigcirc$ , and  $\blacktriangle$ , respectively.

(MPa)<sup>1/2</sup>、屈折率差が 0.007 以上の場合にあることが 見て取れる。一方、屈折率差が 0.007 未満であれば、 SP の値にかかわらず系は透明になることが分かる。

親和性が高い、すなわちマトリックス高分子と P(EA-MMA)との SP の値が近ければ、重合過程におい てマトリックス高分子と微粒子とは相溶したままの 状態で、コロイド結晶の配列構造は保持されやすいと 考えられる。一方、親和性が悪い場合、重合過程でマ トリックス高分子と微粒子との相分離により、コロイ ド結晶が崩壊する事が考えられる。また、両者の屈折 率の差が小さければ、たとえ相分離が起こったとして も、光学的に一様とみなせるため透明になると考えら れる。ここでは、全ての試料の SP を計算で求めたが、 P(EA-MMA)の SP を 22 (MPa)<sup>1/2</sup>とすると、SP の差が 2.7 (MPa)<sup>1/2</sup> 以下であれば構造色が保持されると考え ることができる。

Fig. 3には、構造色が保持された系(EA)、白濁し た系(HA)、および透明になった二つの系(MAと HMA)の試料の、フィルム切断面のAFM像を示して いる。構造色が保持されたEAの系では、微粒子が規 則的に集積した構造が見られるが、白濁化したHAの 系では、微粒子は局所的に凝集しており、規則構造が 崩壊しているように見える。この結果は上述の、 P(EA-MMA)微粒子と高分子マトリックスとの間の親 和性に関する考察を裏付けるものである。また、透明 になったMAでは規則構造を保持しているのに対し、 同じく透明なHMAでは微粒子の凝集している様子 が見られる。HMAのSPがHAと同程度であること を考えると、同じように微粒子の規則構造が崩壊して も、屈折率差の大きなHAでは白濁、小さなHMAで は透明に見えるという結果が得られたと考えられる。

以上の結果より、本研究で用いた全てのモノマーに おいて、膨潤時に発現した構造色が重合後にも保持さ れるのは、重合後の高分子と P(EA-MMA)微粒子との 間の SP 値の差が小さくて親和性が高く、屈折率差が ある程度以上ある系であることが分かった。



Fig. 3. AFM images of colloidal crystal elastomers after polymerization of (a) EA (colored), (b) HA (turbid), (c) MA (transparent), and (d) HMA (transparent).

#### 4. まとめ

P(EA-MMA)微粒子集積体を、様々な化学構造を持つ18種類のモノマー中に浸漬させ、構造色を発現させた。モノマーの種類により、さまざまな波長の構造色を発現したが、それらの間に相関性を見出すことはできなかった。

構造色を発現した 16 種類の系について、膨潤モノマーの重合を行い、重合前後で 構造色がどのように変化するかについて検討したところ、構造色が保持される系、構 造色が消失して無色透明になる系、白濁化する系の3種類に大別できることが分かっ た。モノマー重合後の高分子マトリックスの溶解度パラメーターならびに屈折率の値 に着目し整理をした結果、高分子マトリックスと P(EA-MMA)微粒子との親和性が高 く、屈折率差がある程度以上ある場合に、構造色が保持されることが推測された。