永久架橋と光応答架橋を用いた新規ダブルネットワークエラストマーの創製 と力学特性の光テーラーメイド制御

名古屋工業大学 大学院工学研究科 生命・応用化学専攻

助教 林 幹大

概要:

エラストマーの物性を決定する要素の 1 つに架橋密度がある。一般に、架橋密度が大き い試料は硬く伸びにくく、架橋密度が小さい試料は柔らかく伸びやすい材料となる。従来の エラストマーの多くでは、単一種の架橋により網目構造を形成しており、一つの分子設計に 対して、特有の単一力学特性を示す材料しか調製できない。すなわち、一度成型されたエラ ストマーの架橋密度および力学特性の再調整は不可能である。

そこで本研究では、フィルム内で架橋密度が可変(架橋後に架橋密度の調節が可能)とな る分子設計を考案した(図 1)。構成ポリマーに、熱架橋性官能基に加え、光架橋性官能基 を導入したポリマーを合成した。架橋剤と熱反応させると、まず熱架橋性官能基のみが反応 し、自己支持性の高いエラストマーフィルムが得られる。この段階では光架橋性官能基は未 反応である。このフィルムに UV 照射を施すと、光架橋性官能基が反応し、架橋密度が変化 する。本設計では、UV 照射時間により、フィルムの架橋密度が調節でき、それに付随して 力学特性が変化可能となる。また、本設計の発展として、フォトマスクを用いて光照射を局 所的に行うことで、局所的に弾性率の異なるフィルムが得られる。そのパターニング方法 (水平パターニング、垂直パターニング、パターニングのピッチ等)により、フィルムの伸 長特性・破断特性を調節することが可能となることを発見した。本方法により、単一の分子

設計から、構成ポリマーや架橋剤を変化することなく、多様な力学物性を示す機能性フィルムを開発した。

図1.本研究の分子設計。紫外光照射時間により、エラスストマーフィルムの硬さ・伸長 度を調節可能。また、フォトマスクの利用により弾性率パターニングも可能。

<熱・光架橋性ポリエステルの合成>

チオール基含有ポリエステルの合成

図2のスキームに従って合成した。ジカルボン酸成分にチオリンゴ酸9.01g(60 mmol)を、ジオール成分に1,5-ペンタンジオール6.26g(60 mmol)を用いて Sc(OTf)₃0.30g(0.60 mmol)存在下で溶融重縮合を行い(80℃,20時間)、目的のチオール基側鎖 含有ポリエステルを得た。以後、合成したポリエステルを PE-SH と表記する。

図 2. PE-SH の合成スキーム

光架橋性モノマーの合成

2-ヒドロキシエチルアクリレートとシンナモイルクロリド間のエステル化反応により、 光架橋性ビニルモノマーを合成した(合成スキームは図3に示す)。ナスフラスコに2-ヒ ドロキシエチルアクリレート 6.28 ml (60 mmol)、ピリジン 4.72 ml (45 mmol) を量りと り、ジクロロメタン (DCM) 75 ml に溶解させた後、反応容器を0°C まで冷却した。シ ンナモイルクロリド 5.0035 g (30 mmol) を DCM 25 ml に溶解させ、DCM 溶液を調製し た。反応容器内の溶液を攪拌しながら、シンナモイルクロリドの DCM 溶液を滴下し、室 温に戻して3日間反応させた。得られた溶液を蒸留水で8回洗浄し、無水硫酸マグネシウ ムを用いて脱水を行った。ロータリーエバポレーターで DCM を揮発させ、目的の光架橋 性ビニルモノマーを得た。以後、合成した光架橋性ビニルモノマーを CEA (2cinnamoyloxyethyl acrylate)と表記する。

図 3. 光架橋性モノマーCEA の合成スキーム

ポリエステルへの熱・光架橋性基の導入

図4に従って合成した。PE-SH とアクリル酸(AA)、CEA をマイケル付加反応によって反応させ、1分子鎖中にカルボキシル基(熱架橋性)とシンナモイル基(光架橋性)の両方を有するポリエステルを合成した。スターラーチップを入れた100mlのナスフラスコに、PE-

SH 3.00 g を量りとり、ジメチルホルムアミド (DMF) 溶媒 30 ml に溶解した。得られた DMF 溶液に、AA 0.12 g と CEA 3.05 g、触媒トリエチルアミン (TEA) 0.46 g を加えた。 チオール基に対して AA は 0.12 等量、CEA は 0.9 等量、TEA は 1/3 等量となっている。室 温で 24 時間攪拌し、ロータリーエバポレーターで濃縮した後、磁気攪拌させた大過剰のメ タノールに滴下することで再沈殿精製を行った。再沈殿精製を 2 度繰り返し、真空乾燥を 経て、目的の 1 分子鎖中に熱架橋性官能基と光架橋性官能基の両方を有するポリエステル を得た。以後、得られた熱・光架橋性ポリエステルを PE-dual と表記する。PE-SH の分子 量は 35000 g/mol で、一分子鎖当たり熱架橋性基(カルボキシル基)を 7 点、光架橋性基 (シンナモイル基)を 62 点有している。

図 4. PE-dual の合成スキーム

<架橋反応>

熱架橋反応

42 mm × 122 mm × 20 mm のテフロン容器に、PE-dual (1.2g) と熱架橋剤 1,4-ブタンジ オールジグリシジルエーテル (BDE)、触媒 2-メチルイミダゾール (2-MI) を加え、THF に溶解させた。BDE はカルボキシル基とエポキシ基が化学量論を満たすように、2-MI はカ ルボキシル基の 1/5 等量となるように加えた。THF 溶液を 40 °C のヒーター上に約 12 時 間放置し、溶媒を揮発させた。40 °C で 2 時間真空乾燥させることで、溶媒を完全に揮発さ せた均一混合試料を真空下で 120 °C、4 時間加熱し熱架橋を進行させた。熱架橋前では、粘 着性の試料であったが、熱架橋後では自己支持性の高いエラストマーフィルムとなった(図 5)。

図 5. 熱架橋前後の試料の外観。

光架橋反応

熱架橋のみを施したエラストマーフィルムに対し、UV 光(300 W, 365 nm)を照射するこ とで光架橋を施した。エラストマーフィルムを長さ13 mm、幅4 mmのドッグボーン型に くり抜き、サンプル管瓶に入れ、内部を窒素下にした。エラストマーの表裏に対して、UV 光を照射し光架橋を進行させた。片面当たりのUV 光照射時間(t_{UV})を0、1、5、10、30 分と変化させ、光架橋の進行度が様々な dual 架橋エラストマーを調製した。以後、UV 光 を照射していない試料を SN(Single Network)、UV 光を照射した試料を DN(Dual Network) -X と表記する。ここで、X は試料の片面当たりの t_{UV} に対応している。

<架橋反応の確認と物性の変化>

1. FT-IR(フーリエ変換赤外分光測定)

測定条件:FT/IR-6300 (JASCO)を用いて、室温で測定した。

結果:図 6a に架橋前の混合物とSN(熱架橋試料)のFT-IR スペクトルを示す。架橋前の 混合物で観測された 910 cm⁻¹付近のエポキシ基に由来するピークがSNでは消失していた。 これより、COOH 基とエポキシ基間での熱架橋の進行を確認した。図 6b は、PE-dual と SN の FT-IR スペクトルである。熱架橋前後でシンナモイル基のビニレンに由来する 1630 cm⁻¹ 付近のピークに変化が観測されないことから、熱架橋は光架橋性官能基に影響を及ぼ さないことを確認した。

図7に光架橋前後のエラストマーのFT-IR スペクトルを示す。UV 光の照射に伴い、1630 cm⁻¹付近のシンナモイル基のビニレンに由来するピークの面積が小さくなった。t_{UV} が長くなるにつれ、より多くのビニレンが二量化したことを確認した。また、30 分間の UV 光の 照射によりビニレンピークが消失していることから、ほぼ 100 %のビニレンが消費されたことを確認した。

図 6. (a) 熱架橋前と熱架橋後試料の FT-IR スペクトル (エポキシ領域)。(b) PE-dual と 熱架橋後試料の FT-IR スペクトル (カルボニル領域)

図 7. UV 照射時間(tuv)によるビニレンピークの変化挙動

2. DSC(示差走查熱量測定)

測定条件:DSC7020 (HITACHI HighTech)を用いて、-50°Cから 200°Cの範囲で測定した。 N₂ガス雰囲気下で、温度変化速度 10°C/min で行った。

結果: 図8に、UV照射時間を様々に変化させた試料のDSCサーモグラムを載せた。「▽」 はガラス転移温度(Tg)の位置、数字はTgの値を示す。SNは熱架橋試料を示す。

図 8. 各架橋試料の DSC サーモグラム

3. 引っ張り試験

測定条件:AGS-500NX (SHIMADZU)を用いて、室温で測定した。引っ張り試験速度は 10mm/min であった。用いた試料は、厚み 0.3mm、ゲージ幅 4mm、ゲージ長さ 13mm の ダンベル試験片である。

結果:図9に、各架橋試料に対する応力歪曲線を示す。縦軸は公称応力、横軸は公称ひずみ である。ヤング率(E_{r})、最大応力(σ_{max})、破断伸び(ϵ_{b})を表1にまとめる。

図 9. 各架橋試料に対する応力歪曲線

衣 1.	別つ張り特性のよどの	

モル性性のナレル

71

Sample code	$E_{\mathbf{Y}^{\mathrm{a})}}$ (MPa)	$\sigma_{ t max}^{ ext{b)}}$ (MPa)	$\boldsymbol{\varepsilon}_{\mathbf{b}^{\mathrm{c}}}$ (%)
SN	0.60	1.0	387
DN-1	0.91	1.7	163
DN-5	4.9	2.5	132
DN-10	18.7	3.0	109
DN-30	66.1	6.4	101

<フォトマスクによるパターニング>

装置

3D プリンターを用いて、様々なフォトマスクを作成した。装置は、熱溶解積層タイプ (FDM の、Prusa i3 MK3S (Prusa Research)を用いた。フィラメントとしては、polyethylene terephthalate glycol-modified (PETG) filament (Prusa Research)を用いた。

寸法情報

水平パターニングと垂直パターニングの 2 シリーズを用意した。各シリーズで、スリット のピッチの異なる3種を用意した。スリットの総面積は、水平・垂直シリーズそれぞれにお いて同一となるようにした。実際の寸法情報を図 10 にまとめる。

図 10. フォトマスクの寸法情報

光架橋

熱架橋のみを施したエラストマーフィルムに対し、フォトマスクを用いて UV 光(300 W, 365 nm)を照射することで光架橋を施した(参考:図11)。ダンベル試料形状(13 mm、幅 4 mm)のエラストマーフィルムを2枚のフォトマスク(同一寸法)で挟み、表裏に対して、UV 光を照射し光架橋を進行させた(30分、室温)。以降では、H-A を用いた光架橋試料を 実施例1、H-B を用いた光架橋試料を実施例2、H-C を用いた光架橋試料を実施例3、V-A を用いた光架橋試料を実施例4、V-B を用いた光架橋試料を実施例5、V-C を用いた光架橋 試料を実施例6と表記する。対照試料として、全面に光架橋を施した試料を調製し、これを 比較例1とする。

図 11 (a)フォトマスクを用いたフォトパターニングの工程。(b)外観。

<パターニング試料の引っ張り・破断特性>

水平パターニング

引っ張り速度1mm/min で引っ張り試験を行った。水平パターニングにより弾性率の粗密 を施した試料では(実施例1,2,3)、UV 光を施していない部分(SN部)は柔らかく伸びや すく(SN部)、UV 光を照射した部分(dual部)は伸びにくいという結果が観られた。例と して、H-Aを用いてパターニングした試料(実施例1)のひずみ150%では、SN部は dual 部に対して5倍以上の伸長を示した。また、用いるフォトマスクのスリット数を変化させ ることで試料内の高変形領域と低変形領域の制御が可能となった。

図 12. 引っ張り測定結果(水平パターニング)

垂直パターニング

引っ張り速度1mm/min で引っ張り試験を行った。垂直パターニングを施した試料では、

破断挙動に大きな違いが生じた。図 9 に示すように、光架橋が進行し架橋密度が大きくな るにつれ、*ε*_bは小さくなる。したがって、垂直パターニングを施した試料(実施例 4,5,6) では、伸びにくい DN 部位が先に破断する。しかし、破断した DN 部位の両隣には伸びや すく破断しにくい SN 部位が位置しているため、破断の伝播が遅延され、材料の瞬時の完全 破断は起こらない。V-A、V-B、V-C の順にスリットの本数を増やすことで、材料の完全破 断がより起こりにくくなった。一方で、完全に光架橋を施した試料(比較試料 1)では、ク ラックが生じた直後に端から端へ伝播し、破断が瞬時に起きた。図 13 に示す応力歪曲線に おいても、最大応力を観測した時点から、段階的に応力が減少し破断が進行していく様子が 見てとれた。これらの結果から、垂直パターニングにより、材料の破断挙動を制御すること に成功したと言える。

<すべてを光架橋(比較試料1)>

<V-C 試料>

図 13. 引っ張り測定結果(垂直パターニング)

おわりに:

本課題では、熱・光架橋性官能基を有するポリマーを用い、架橋密度可変エラストマーの創 製と、弾性率パターニングによる伸長・破壊特性制御を達成した。従来のエラストマーの多 くでは、単一種の架橋により網目構造を形成しており、一つの分子設計に対して、特有の単 一力学特性を示す材料しか調製できない。そのため、樹脂は"均質であるもの"という概念が 盲目的に浸透している。一方で、植物や生物などでは、様々な硬さを有する構成物が組み合 わさった構造をとるものがほとんどであり、その複雑な組み合わせにより本能的に機能化 されている(例えば昆虫の羽の翅脈は、亀裂の伝播を防ぐ役割をしていると言われている)。 合成樹脂に対しては、その"不均質性"を組み入れた設計とその有用性はこれまであまり注目 されていなかったが、本研究によりその有用性の一端が示された。本コンセプトを展開すれ ば、単一の素材から、微細弾性率パターニングにより、伸長特性・破壊特性のテーラーメー ドな調節を実現できる。すなわち、目的にあった力学物性を示す樹脂を、合成の段階から逐 一行う必要がない。これは、試薬消費やエネルギー消費の削減を導き、石油資源や CO₂の 問題解決に貢献できる(合成に要する人的・時間的コストも削減できる)。今後は、一方向 のパターニングだけではなく、同心円状・格子状・ドット状など、より複雑なパターニング を行っていく。これにより、より緻密な力学物性調節が可能となる。フレキシブルデバイス (フォルダブルデバイス)、ウェアラブルデバイス、ロボットなど社会ニーズの高い先端分 野へ活用していきたい。

本研究を進めるにあたり、公益財団法人 江野科学振興財団のご支援に多大が感謝をして おります。この場を借りて、厚く御礼申し上げます。

成果

<国際査読付き論文>

• Kanta Sugimoto, Mikihiro Hayashi, Isamu Kawarazaki, Shuto Ito, "Versatile tensile and fracture behaviors of dual cross-linked elastomers by postpreparation photo tuning of local cross-link density", Polymer, Vol. 230(16), 124089.

<特許出願>

・林 幹大, 杉本 幹太, 弾性率局所可変材料、弾性率局所可変材前駆体、弾性率局所可変材 及びそ のフィルム, 特願 2021-063345

<学会発表>

・杉本幹太,林 幹大,高須昭則,熱・光架橋性 dual 網目からなる密度可変エラストマーの 調製,2020 年度東海高分子研究会学生発表会 (オンライン),2020 年 11 月 (優秀口頭発表 賞受賞)